'การ์ทเนอร์' เผย 'AI Agents’ อาวุธลับ เปลี่ยนเกมการตัดสินใจธุรกิจ
“การ์ทเนอร์” เผยคาดการณ์ด้านข้อมูลและการวิเคราะห์ (Data and Analytics) สำคัญๆ ของปี 2568 และปีต่อๆ ไป พบว่า การตัดสินใจทางธุรกิจครึ่งหนึ่งเป็นผลมาจากการเพิ่มประสิทธิภาพและการทำงานอัตโนมัติจาก “AI Agents”
คาร์ลี่ ไอโดอีน รองประธานนักวิเคราะห์ การ์ทเนอร์ กล่าวว่า ในวันนี้กิจกรรมเกือบทุกอย่างตั้งแต่วิธีการทำงานไปจนถึงวิธีการตัดสินใจล้วนได้รับอิทธิพลจากปัญญาประดิษฐ์ไม่ทางตรงก็ทางอ้อม
อย่างไรก็ดี AI ไม่สามารถตอบสนองหรือส่งมอบคุณค่าทั้งหลายได้เองตามลำพัง จำเป็นต้องทำงานสอดคล้องกับข้อมูล แนวทางการวิเคราะห์ และการกำกับดูแล เพื่อช่วยให้ตัดสินใจและดำเนินการได้อย่างชาญฉลาดและสามารถปรับเปลี่ยนได้เหมาะสมกับองค์กร
ไม่มี ‘สูตรสำเร็จ’
การ์ทเนอร์แนะนำให้องค์กรใช้หลักสมมติฐานเชิงกลยุทธ์ต่อไปนี้ เพื่อวางแผนอนาคตในอีก 2-3 ปีข้างหน้าดังนี้
ภายในปี 2570 ครึ่งหนึ่ง (50%) ของการตัดสินใจทางธุรกิจมาจากการทำงานอัตโนมัติและเสริมประสิทธิภาพด้วย AI Agents สำหรับ Decision Intelligence
Decision Intelligence เมื่อรวมเข้ากับข้อมูล การวิเคราะห์ และ AI จะสร้างกระบวนการตัดสินใจเพื่อสนับสนุนและทำให้การตัดสินใจที่ซับซ้อนเป็นอัตโนมัติ โดย AI Agents ช่วยเพิ่มประสิทธิภาพกับกระบวนการนี้ จัดการกับความซับซ้อน การวิเคราะห์ และการดึงแหล่งข้อมูลต่างๆ มาใช้
AI Agents สำหรับ Decision Intelligence ไม่ใช่สูตรสำเร็จและไม่ใช่เรื่องที่ผิดพลาดไม่ได้ หากแต่ต้องใช้ร่วมกันกับการกำกับดูแลและการจัดการความเสี่ยงที่มีประสิทธิภาพ ซึ่งการตัดสินใจของมนุษย์ยังต้องการความรู้ที่เหมาะสม รวมถึงความรู้ในด้านข้อมูลและปัญญาประดิษฐ์
ปูทาง ‘ทำเงิน’ ในอนาคต
ภายในปี 2570 องค์กรที่มุ่งเน้นให้ผู้บริหารเรียนรู้และเข้าใจเรื่องปัญญาประดิษฐ์ (AI Literacy) จะมีผลประกอบการทางการเงินสูงกว่าองค์กรที่ไม่สนใจเรื่องนี้ถึง 20%
การปลดล็อกศักยภาพธุรกิจเต็มรูปแบบด้วยปัญญาประดิษฐ์ต้องสร้าง AI Literacy ให้แก่ผู้บริหาร พวกเขาต้องเรียนรู้และทำความเข้าใจเกี่ยวกับโอกาส ความเสี่ยงและต้นทุน AI เพื่อตัดสินใจได้อย่างมีประสิทธิภาพและเตรียมพร้อมสำหรับอนาคต การลงทุนด้าน AI ที่ช่วยเร่งผลลัพธ์ขององค์กร
ภายในปี 2570 ผู้บริหารด้านข้อมูลและการวิเคราะห์ 60% จะเผชิญกับความล้มเหลวครั้งใหญ่ในการจัดการข้อมูลสังเคราะห์ (Synthetic Data) เกิดความเสี่ยงต่อการกำกับดูแล AI ความแม่นยำ และการปฏิบัติตามข้อกำหนดของโมเดล
กล่าวได้ว่า การใช้ข้อมูลสังเคราะห์ หรือ Synthetic Data เพื่อฝึกโมเดล AI ขณะนี้เป็นกลยุทธ์สำคัญเพื่อเพิ่มประสิทธิภาพความเป็นส่วนตัวและการสร้างชุดข้อมูลที่หลากหลาย
อย่างไรก็ตาม ความซับซ้อนเกิดขึ้นเนื่องจากความจำเป็นที่จะต้องให้แน่ใจว่าข้อมูลสังเคราะห์สามารถสื่อถึงสถานการณ์ที่เป็นจริงได้แม่นยำ ปรับขนาดได้อย่างมีประสิทธิภาพเพื่อตอบสนองความต้องการข้อมูลที่เติบโต และบูรณาการเข้ากับข้อมูลและระบบที่มีอยู่ได้อย่างราบรื่น
เพื่อจัดการกับความเสี่ยงเหล่านี้ องค์กรต้องใช้การจัดการ Metadata ที่มีประสิทธิภาพ โดย Metadata จัดเตรียมบริบท เชื่อมโยง และกำกับดูแลที่จำเป็นเพื่อติดตาม ตรวจสอบ รวมถึงจัดการข้อมูลสังเคราะห์ได้อย่างมีความรับผิดชอบ ถือเป็นสิ่งสำคัญในการรักษาความถูกต้องแม่นยำของ AI และการปฏิบัติตามมาตรฐาน
ใช้ AI ช่วยตัดสินใจ ‘เรื่องสำคัญ’
ภายในปี 2571 โครงการนำร่อง GenAI 30% ที่มุ่งสู่การผลิตขนาดใหญ่จะถูกสร้างขึ้นแทนที่การใช้งานผ่านแอปพลิเคชันสำเร็จรูป (Packaged Applications) เพื่อลดต้นทุนและเพิ่มการควบคุม
การสร้างโมเดล GenAI ภายในองค์กรให้ความยืดหยุ่น การควบคุม และคุณค่าในระยะยาวที่เครื่องมือสำเร็จรูปหลายอย่างทำไม่ได้ และเมื่อความสามารถภายในเติบโตขึ้น
เรื่องนี้องค์กรควรนำกรอบการทำงานที่ชัดเจนมาใช้สำหรับการตัดสินใจว่าจะสร้างเองหรือจะซื้อ (Build Versus Buy Decisions) ที่ต้องพิจารณาปัจจัยด้านต้นทุน ระยะเวลาที่จะออกสู่ตลาด ชุดทักษะความรู้ที่มีอยู่ ความสามารถในการบูรณาการ การปฏิบัติตามข้อกำหนดและความเสี่ยง
ภายในปี 2570 องค์กรที่จัดลำดับความสำคัญของอรรถศาสตร์ (การศึกษาความหมายของคำหรือภาษา) หรือ Semantics ในชุดข้อมูล AI จะเพิ่มความแม่นยำของโมเดล GenAI ได้สูงสุด 80% และลดต้นทุนสูงสุด 60%
อรรถศาสตร์ที่ไม่ดี (Poor Semantics) หรือการศึกษาความหมายของภาษาที่ไม่ดีใน GenAI นำไปสู่การตีความผิดเพี้ยนมากขึ้น ต้องการโทเค็นและมีต้นทุนสูงขึ้น องค์กรที่ทบทวนการจัดการข้อมูลโดยมุ่งเน้นไปที่ Active Metadata ขับเคลื่อนความแม่นยำและประสิทธิภาพของโมเดลมากขึ้น จะมีความพร้อมด้านข้อมูลปัญญาประดิษฐ์สูงขึ้น (AI Data Readiness) และลดต้นทุนการคำนวณ
ภายในปี 2572 บอร์ดบริหารทั่วโลก 10% จะใช้คำแนะนำที่ได้รับจาก AI มาท้าทายการตัดสินใจที่มีความสำคัญต่อธุรกิจของผู้บริหาร
เมื่อ AI ฝังอยู่ในกลยุทธ์ของบอร์ดบริหาร ความต้องการการกำกับดูแลข้อมูลให้แข็งแกร่ง หรือ Data Governance ความชัดเจนกฎระเบียบ และการจัดการชื่อเสียงองค์กรจะมีความเข้มข้นขึ้น