請更新您的瀏覽器

您使用的瀏覽器版本較舊,已不再受支援。建議您更新瀏覽器版本,以獲得最佳使用體驗。

理財

深度求索發布DeepSeek-OCR:解密「光學壓縮」的文字速讀機制,為何AI學會遺忘反而省算力?

數位時代

更新於 10月21日05:41 • 發布於 10月21日05:00

重點一:DeepSeek OCR 以「光學壓縮」技術處理寫滿文字的圖片,最高壓縮10倍且保留約97%資訊,讓AI可處理更長文件。

重點二:DeepSeek OCR 把文件當成圖片處理,用兩個擅長不同工作的模型分工合作,再用一個「16倍壓縮器」把需要計算的資料量大幅減少。

重點三:DeepSeek OCR 每天可以在單一 Nvidia A100 GPU 上處理超過 20 萬頁資料。如果使用 20 台伺服器,每台伺服器運行 8 塊 A100 處理器,吞吐量將躍升至每天 3,300 萬頁。

中國AI公司Deepseek(深度求索)於10月21日推出DeepSeek-OCR(光學文字辨識)系統,主打將以「影像」呈現的文字文件做高效率壓縮後再交由語言模型處理。其技術上核心訴求是:處理「影像中的文字」比直接處理「數位文字」更省算力。

而在應用上,這套系統的核心賣點也很簡單: 用更少的「視覺符號」(內部的影像單位)就能把文件讀懂,並輸出成可編輯的文字或結構化內容,包含表格、公式與圖表。

OCR讀起字來多有效率?DeepSeek技術報告指出,在維持約97%資訊的前提下,文字脈絡可被壓縮至最多10倍,從而延長LLM可承載的上下文長度,減少記憶體與推論成本。

系統也可將「對話歷史影像化並壓縮」,將較舊的聊天內容以低解析度保存,類似人類「漸漸遺忘」的機制:資料越久、越遠、越低解析,就越模糊。

圖片以時間、距離和解析度為三個維度,說明了記憶、視覺和文字的清晰度變化。

記憶刻度 :時間從「剛發生」到「1年」,清晰度由「Crystal Clear」逐步變成「Almost Gone」,描述人類記憶隨時間自然衰退。
視覺刻度:距離從 10 cm 到 20 m,越遠越不清楚,對應「看得近清楚、遠則模糊」的直覺感受。
文字刻度(解析度):從「Gundam」到「Tiny」等級,解析度越低、需要的「視覺符號」越少,文字呈現也越模糊,象徵以圖片方式壓縮舊文本。

這樣的優勢主要瞄準長文件處理、跨頁表格與圖形理解,以及跨語言(約100種)文件抽取,並在維持原始版面或輸出純文字的彈性間取得平衡。

白話來說,處理更少的符號,意味著更快的處理、更低的成本。對需要大量掃描、歸檔和資料萃取的工作類型,是最直接的效率紅利。

OCR如拼裝車!3步驟把資料「切塊再瘦身」

技術上,OCR如何辦到?DeepSeek‑OCR的做法是:把一頁文件當成「圖片」丟給AI,先切塊、再瘦身,最後才請懂圖又懂字的模型來讀。

第一步,前處理引擎DeepEncoder把版面「劃重點」:段落在哪、表格在哪、圖形在哪,別讓後面的模型浪費力氣在邊角裝飾(這裡用的是臉書母公司Meta的SAM,專門做影像分割)。

第二步是「資訊減肥」。例如原本一張1,024×1,024的頁面,會變成4,096個「視覺單位」(token),先經過壓縮器直接砍到256個,類似把會議逐字稿濃縮成重點條列,將算力和記憶體省下來。

第三步則是「理解」。其利用OpenAI的CLIP,負責把「看到的區塊」對上「語意」,也就是判斷這段到底在說什麼、這張圖在表達什麼。而因為前面已經切塊並瘦身,所以CLIP不用面對整頁的雜訊。

Deepseek OCR先把文件當成圖片處理,用兩個擅長不同工作的模型分工合作,再用一個「16倍壓縮器」把需要計算的資料量大幅減少。

結果,同樣的一頁文件,DeepSeek‑OCR通常只需要64到400個視覺token就能讀懂:一般簡報大約64個、書籍或報告約100個。而若遇到版面複雜的報紙,再打開所謂的「Gundam模式」把配額拉到最多800。對比傳統OCR動輒上千到上萬token,這套路線是「少算力、更多內容」。

DeepSeek‑OCR 的輸入模式分成三類,對應不同「視覺符號」數量,以測試在各種壓縮比例下的表現。

進一步來說,DeepSeek‑OCR的輸入模式分成三類,以對應不同「視覺符號」數量,以測試在各種壓縮比例下的表現。

• Tiny|Small:固定尺寸(約 512、640),輸出 64 或 100 個視覺符號。適合字數不多、版面簡單的頁面,用少量符號就能還原內容。
• Base|Large:較大尺寸(約 1024、1280),輸出 256 或 400 符號。以「補邊」保留原始長寬比;有效符號會因黑邊扣除而少於名義值。
• Gundam|Gundam‑Master:動態模式,把頁面切成 n 個局部視野,再加一張全局視野。

一日處理3,300萬頁!OCR資料集與權重全面開放

在實務部署方面,DeepSeek-OCR宣稱以單顆Nvidia A100每日可處理約200,000頁;若以20台伺服器、每台8顆A100組成叢集,日處理量可達3,300萬頁。此吞吐量不僅可支援企業級文件工作流,也有助於為LLM建構海量文字語料。

研究團隊訓練時使用約3,000萬頁PDF(含近百種語言,其中中文與英文約2,500萬頁),並加入1,000萬張合成圖表500萬份化學式100萬份幾何圖形以強化多模態文件理解。

更重要的是,官方開放程式碼模型權重,讓生態系可驗證與擴充此技術;在多語、保版面與純文字輸出之間提供彈性,適合長文件抽取、AI訓練語料建置,以及聊天機器人脈絡的「成本感知式」保存。

整體而言,DeepSeek-OCR以「影像壓縮+少量token」策略,將OCR從單純文字擷取,推進到可支援LLM長脈絡與結構化資料抽取的系統級能力。

英國資深網頁開發者Simon Willison實測指出,DeepSeek‑OCR 可在 NVIDIA Spark(ARM64 + CUDA)的環境中順利跑通,整體印象是:只要花時間選擇合適的「運行方式/提示」,DeepSeek‑OCR本身的模型表現「非常好」,足以在新硬體條件下完成高品質 OCR。

如何使用 DeepSeek OCR ?

一般讀者可用 Hugging Face 下載模型,安裝必要套件後,把圖片丟進範例程式即可做 OCR。其建議簡易流程如下:

  • 事前準備:有一台可用的電腦。若沒有 NVIDIA 顯示卡,也能跑,但會較慢;Hugging Face 頁面示範是用 NVIDIA GPU、CUDA 11.8。
  • 安裝工具:安裝 Python(建議 3.12)與套件管理工具(pip 即可)。
  • 安裝必要套件:torch 2.6.0、transformers 4.46.3、tokenizers 0.20.3、einops、addict、easydict;加速可選擇安裝 flash-attn 2.7.3
  • 取得模型:從 Hugging Face 載入模型名稱 deepseek-ai/DeepSeek-OCR
  • 放入圖片:把要辨識文字的圖片檔(如掃描的合約、收據、海報)指定到程式,執行後就會輸出文字或 Markdown。

延伸閱讀:Canva回來了!AWS雲端服務全面修復完成,快打開看Perplexity、Coinbase⋯⋯能不能用?

資料來源:DeepSeekDecoderSimon Willison’s Weblog

本文初稿為AI編撰,整理.編輯/ 李先泰

延伸閱讀

創新板可以當沖了!主管機關3大策略,朝「亞洲那斯達克」邁進
矽谷創投界炙手可熱的台灣人:陳恩平是誰?a16z也搶投資!他如何以「VC操刀手」逆轉人生?
「加入《數位時代》LINE好友,科技新聞不漏接」

查看原始文章

更多理財相關文章

01

沒去夜市來這裡!黃仁勳台南「美食地圖」曝光 與魏哲家大啖溫體牛肉爐

三立新聞網
02

直播認割韭菜!泡泡瑪特員工:價格「確實過分」 股價蒸發近4成

三立新聞網
03

普發1萬上車0050!20年翻成14萬 讓台積電、鴻海幫你生財

三立新聞網
04

起底/日產靠台灣神秘買家續命 台灣隱形千億富豪曝光

鏡報
05

爸爸回來了!黃仁勳留台1天半行程曝 這原因沒空逛夜市:我想他了

三立新聞網
06

獨家/以為拿錯訃聞? 鎢鋼大王廖萬隆改姓張原因曝

三立新聞網
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...
Loading...